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NOMENCLATURE

a, b mapping parameters

Cp specific heat

Cu, Cp» Cis Cas Cy turbulence model coefficients

ey, e, convective terms alternating difference parameters
E, F, G, H conservation variable vector arrays

h static enthalpy

H total enthalpy (=h + .;. Q2)

J planar (J=0)/axisymmetric (J=1) flag

k, e, W turbulence model variables

M Mach number

P static pressure

P production rate of turbulent kinetic energy
Pr Prandtl number

Q total velocity

Ro universal gas constant

T static enthalpy

ug, v, W velocity components

V, W mapped velocities in n and ¢t directions
Vf stress/transport terms

W(é) mixture molecular weight

X, ¥, 2 cartesian coordinates

x, 6, r eylindrical coordinates

a subsonic (e=0)/supersonic (a=1) parameter
ey mass fraction of ith species

B flux parameter (8 = pU32)

& n, ¢ mapped coordinates
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NOMENCLATURE — CONTINUED

specific heat ratio

specific heat ratio parameter (= [y-11/7)

gas mixture density

effective Prandtl number
species mass fraction parameter
effective viscosity (= By o+ pt)

effective transport parameter for scalar diffusion

vorticity



ABSTRACT

This final technical report describes numerical procedures formulated

for the analysis of three~dimensional (3D) jet mixing problems, as
incorporated in the computer model, SCIP3D. The overall methodology closely

parallels that developed in the earlier 2D/axisymmetric jet mixing model,
SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet
mixing equations, cast in mapped cartesian or c¢ylindrical coordinates,
employing the explicit MacCormack Algorithm. A pressure-split variant of
this algorithm is employed in subsonic regions with a sublayer approximation
utilized for treating the streamwise pressure component. SCIP3D contains
both the ke and kW turbulence models, and employs a two—component mixture
épproach to treat jet exhausts of arbitrary composition. Specialized grid
procedures are used to adjust the grid growth in accordance with the growth
of the jet, including a hybrid cartesian/cylindrical grid procedure for
rectangular jets which moves the hybrid coordinate origin towards the flow
origin as the Jjet transitions from a rectangular to circular shape.
Numerous calculations are presented for rectangular mixing problems, as well
as for a variety of basic unit problems exhibiting overall capabilities of
SCIP3D.
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1. INTRODUCTION

1.1 Program Overview

This final technical report describes computational methodology
developed to analyze 3D Jjet mixing problems using spatial matching
parabolized Navier-Stokes (PNS) methodology. The program was initiated in
1981 with preliminary work focused on developing methodology for analyzing
ZD supersonic free jet interaction problems. The SCIPVIS shock-capturing
model, initially developed to analyze such supersonic problems, was then
extended to analyze supersonic jets exhausting into subsonic external
streams. The SCIPVIS methodology was documented in an interim technical
report,* and a number of journal articles were published which describe its
application to analyzing the detailed multiple-cell shock structure in
turbulent jets (see refs. 2-5).

The SCIPVIS model employed explicit numeries and thus could not readily
analyze wall-bounded jet flows which resolve the details of the near-wall
boundary layer. To address this problem area, the 2D SPLITP model was
developed which employs implicit, pressure-split numerics. A number of
earlier papers and journal articles describe various aspects of the numerics
in SPLITP (see refs. 6-9). The extension of SCIPVIS and SPLITP based
numerics to analyze 3D jet mixing problems is the subject of this final
technical report.

1.2 Utilization Of SCIPVIS and SPLITP Models In Other Programs

The SCIPVIS and SPLITP 2D research models developed under this NASA
program have been extended to analyze a broad spectrum of problem areas
under other government sponsored programs. Under Army (MICOM) and Air Force
(AFWAL) support, SCIPVIS and SPLITP have been extended to analyze
multi-component/multi-phase flows with nonequilibrium chemistry and
gas/particle interactions. They serve as components of the latest JANNAF
Standard Plume Flowfield Model (SPF/3) as schematized in Figure 1, and
described in refs. 10 and 11, and in several papers presented at the JANNAF
15th and 16th Plume Technology Meetings. Analogous pairing of SCIPVIS and
SPLITP PNS numerics has been utilized to analyze hypersonic wake flowfields
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as described in refs. 11-13. In both the plume and wake models above,
SCIPVIS and SPLITP are also utilized to analyze the base region employing
Chapman—Korst type assumptions to achieve closure (see refs. 10 and 14 for
details). A wall jet version of SPLITP is a major component of the

circulation-control airfoil codel$-17 developed jointly by SAIC and AMI
under NASA/Ames support.

The most recent extensions of SPLITP and SCIPVIS numerics were made
under DARPA/Air Force Support to analyze scramjet propulsive flowfields in
support of the National AeroSpace Plane (NASP) program. The NASP version of
SPLITP, entitled SCORCH, is wutilized to analyze scramjet supersonic
combustor flowfields with tangential or moderately inclined fuel injection
(refs. 18 and 19). The NASP version of SCIPVIS, entitled SCHNOZ, is
utilized to analyze scramjet nozzle flowfields including the plume-like
interaction of the nozzle exhaust flow with the vehicle aerodynamic flow at
supersonic flight conditions (refs. 20 and 21). These codes have enhanced
numerical capabilities to deal with strongly combusting flows in comparison
with the earlier plume/wake versions. SCORCH and SCHNOZ comprise components
of a complete design-oriented scramjet propulsive flowfield model?2,23 which
has seen widespread usage by the NASP community. Current efforts are
‘focused on unifying SCORCH/SCHNOZ numerics for the multi-zone analysis of
generalized 2D jet mixing problems with chemistry, utilizing SCORCH implicit

numerics in near-wall regions, and SCHNOZ explicit numerics in central

regions,

1.3 3D Jet Mixing Code, SCIP3D

The SCIP3D code represents extensions of the 2D methodology in the
SCIPVIS and SPLITP models to analyze 3D jet mixing problems. SCIP3D is
based upon the numerics in the SCIPVIS code and employs the explicit
MacCormack algorithm to spatially integrate the 3D PNS jet mixing equations
in supersonic flow regions utilizing mapped rectangular or cylindrical
coordinates. Both the ke and kW two-equation turbulence models are
incorporated into SCIP3D. For subsonic jet mixing problems, a pressure-
split approach is employed whereby the streamwise pressure gradient is
imposed and the cross-flow velocity field 1s determined via a coupled

noniterative approach which parallels that employed in SPLITP for highly



curved jets.® For mixed problems (supersonic jet into subsonic stream), it
has been found necessary to adapt the grid to the shape of jet sonic line to
deal with supersonic/subsonic coupling methodology in an ’‘organized’ manner.
For rectangular Jjets with large aspect ratios, this has required the

utilization of hybrid rectangular/cylindrical mapped grids with a moving
cylindrical origin which ultimately coincides with the jet axis far

downstream when the jet takes on a circular shape. Numerous test cases are
described in this report which were performed to check-out the varied run
options included in SCIP3D. Various aspects of SCIP3D methodology have been
given in earlier papers and journal articles (see refs. 24-27). This report
will attempt to synthesize the work already documented, expand upon it where

necessary, and provide details of recent work not yet reported upon.



2. GOVERNING EQUATIONS

2.1 The 3D PNS Equations

The conservative form of the 3D PNS ‘’straight-back’ jet mixing equa-

tions in cartesian (J=0) or cylindrical (J=1) coordinates is listed below:

E 1 oF 6 g

o9 + 2 _+H=V
8x; ,J 3x, 3%, F (1)
In eq. (1), x, corresponds to the axial (marching) direction, x, is the

cross—flow direction, and x,

is the vertical or radial direction. The
coordinate system nomenclature for the two systems is summarized in Figure

2. The vector arrays comprising E, F, G and H are as follows:

pU 7] oV ] oW
- aP+pU2 _ pUV _ pUW
E pUV F P+pV2 G = pVW
pUW pVW P+pW2
pUH pVH pWH
pUd pVd pWé
B JIgH ] 0 ]
- 1 r* (1-a) 8P/3x,+JpUW _ Yy
H==— 2JpVW VF = VV
Y J(W2-V2) Vw
JpWH v,
dJ pr Vg

The vector VF’ represents the parabolized stress and transport terms. In

the above equations, U, V, and W are the axial, crossflow and radial

velocity components, p is the demnsity, P is the pressure, H is the total

enthalpy, and g is the species parameter to be descr:ibed below. The

parameter, a, is a pressure-split parameter used to distinguish between

supersonic (a=1) and subsonic (a=0) run modes.

2.2 Thermodynamics

The jet mixing problems considered assume that the jet and external

streams are each of uniform composition. For nonreacting (chemically

frozen) situations, the species parameter, Z. describes the local mixture
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Systens.



composition; viz.,

$ = — (2)
a., — a,

where a; is the mass fraction of the ith species and J and E represent the

constant values of a; in the unmixed jet and external streams. The static
enthalpy is given by:

h(8,T) = {h(T) - hy(T)}8 + hp(T) (3)

where:

hy g = } {a;hy (T} g
i

Then the specific heat ratio, y(&,T) is given by:

C (6, T)W(B)/R
Y@ = T “
p’ o
where the specific heat, Cp, is given by:
~ _ dh
and the molecular weight, W, is given by:
1 1 1
W) =[ (z—-=)¢+z=1 (6)
Wy Wg Vg

2.3 Parabolized Stress and Transport Terms

Eliminating all terms containing streamwise derivatives and using the
Boussinesq-type approximation, the parabolized stress terms in the cartesian

and cylindrical systems are written as follows:



Cartesian

Coordinates (x1 =X, Xy =¥, X3 = z)

9 au [ au
a—y'(ll-a—)';)"' '5;(;1-6—2-)

FGug bufh- L2l Lol
S guih -g;(p%)- %;(%u%ﬂ %(u%
SaP LGP
g_yagf,ng;(;gg)

Cylindrical Coordinates (x1 =X, X, = 6, Xg = r)

1 0 1 90U 0 au
F st ow R

lQ’

(rW) + 2W/r]

Wi
e J 0
@

r

(7a)

(7p)

(7¢)

(7d)

(7e)

(8a)

(8b)

(8c)



1 9 ,~10H 9 -~ oH

VH = % (n = -a'a-) + T3 (un 3;) (8d)
12 (~108 .3 ~a8

V6 =1 Er) (v 3 33) Yo e (8e)

In the above stress/transport term expressions, p represents the 'effective
viscosity’ (= ry + pt) and E 1s the effective transport parameter for scalar

diffusion (= ullPr + ut/Prt) based on the assumption that heat and mass
diffuse at the same rate (viz., Lewis number of unity assumed).

2.4 Two-Equation Turbulence Models

Both the ke3® and kW3? two—equation turbulence models are utilized in
SCIP3D. The standard coefficients and constants are employed as described
in the earlier SCIPVIS report.® Using tensor notation (repeated subsecripts

indicating summation), the ke model solves the following equations for k and
8:

3 ) Bt ok _
;.,—}-(-;—(pvdk) = -5-;(3-(;; -a-;(;) +P -¢g (9a)
_ (pV,e) = I Yt 2e ) +C, £ P -C. pe2/k (9b)
axJ 3 axJ o, axJ 1k=""2P
where:
au au au

- J i i_ (10)

P=n ( ax, ' ox, ) ox, Ryw

The dominant cartesian parabolized terms in the vorticity, o, for flows
where U >> V, W are given by:

3
- au, 2 au, 3 [V, W]
© = p (W) + (-5-2- +0 {[m]} (11)



by:

The turbulent viscosity, o is defined by:
3
e = Cupk le

The kW model solves the following equations for k and W:

? ) Pt ak 1/2
9 _(pVk) = S— (—=2—) +P - pC kW
axJ 3 axJ o axJ - D
C WP
3 2 L s 3/2 2
ox, (pV4W) = ox, ( oy 0% Y e T T+ Cap (Ve)

w,

are given

(12)

(13a)

(13b)

2
The dominant cartesian parabolized terms in the vorticity expression, (vw) ,

are enumerated below:

(Vo)2 = l;

1 [(au a3y,* ., 3U 8U 32U 2%U_ , U 22U )’

5; 557) 3; 3z dy? dydz 3z dyoz

+ (

2
au 93 au au 32U 230, U azu)’]
dy 0zdy y 0z 9z2 9zdy 9z 9z2

-~10-
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The dominant c¢ylindrical parabolized terms in the vorticity expression,
(Vw)z. are given by:

so w2, 20 820 1908 (19U
(Vo) r2 + r [(ar) ors3 + (r 86) ir (r 53) (1%)
1 U, 92U 19U o 1 au, |2
+— ——--—-——"’— =\
w3 [(ar) or3 r 36 or (r 530]
¢ L 301 2 Uy 1901 & 1403
w|3rr 36 ‘or roér 36 r a6
The turbulent viscosity, Ry is defined by:
b, = pk/wt/2 (16)

2.5 Mapped Vectorized Equations

The mean flow and turbulence model equations are solved in a mapped

computational domain defined by the geometric transformation:

E = X, (17)
n= lexz’U
¢ = (x

3-x3.L)/(x3,U—x3‘L)

In this transformaﬁion,

of the
In the present application of this mapping for rectangular
problems, the bounding computational surfaces are assumed‘to have no cross
curvature 1i.e. Yy = yU(x), yA

L and U designate bounding surfaces

computation.

Ly = ZL U(x). With this assumption, the
» 14
cartesian equations can be cast in the following form:

3E , oF . oG _

-11-



=
1
2]l

F=bF-ak
y ayE

bzG - azE

(]
n

H=H+ (la] + [a,])E

and the transformation parameters ay, a,, by and bz are defined by:
a = nlyy),/vy
a, = [(l-c)lzL]x + L;[zU]x]/(zU - zL)
by: 1/yU

bz= 1/(zU - zL)

For free Jjet problems, Yy and 2 4 must fully encompass the viscous
jet. This 1is accomplished using growth rule formulations of the form:

dz VA
- D @ 2 D
J* 1 JMAX

which parallel those utilized in SCIPVIS? for 2D underexpanded jets, applied
on the two symmetry planes (y=0 and Z=0) as exhibited in Figure 3. In
Figure 3, J* corresponds to the viscous dividing streamline position on the
symmetry plane, y = 0, ascertained by monitoring the é profile at each step
(6 = é*, where ¢é* = .5 until the mixing reaches the axis); JMAX is the index
of the upper boundary point; W/U is the streamline inclination at J*; and,
9f/9z is the outer edge gradient of the parameter f (taken to be the maximum
of the streamwise velocity and species parameter). This boundary growth
formulation provides for exact alignment of the viscous dividing streamline
position with the mapped coordinate 1line, ¢ = constant in the initial
expansion region of the Jjet. Note that the viscous part of the growth
relation (the 9f/8z term) is not activated until the jet shear layer reaches
the upper boundary, and, that boundary growth is enforced to always be
positive. Application of this boundary growth formulation on both symmetry

-12-
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FIGURE 3. Mapped Computational Domain for Supersonic Rectangular Jet
Exhausting Into Supersonic Stream.
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planes to yield the variation of zU(x) and yU(x) yields a mapped grid
network which initially captures the 3D jet induced bow shock, and encloses
the viscous jet in a manner which automatically makes the transition from a
rectangular to a square type of grid in accordance with the respective

vertical and transverse gradients in the flow.

For cylindrical problems, the cross-flow boundaries are always constant
(i.e. Xy y = 6U = constant) while the radial boundaries can have both axial
and cross-curvature (i.e. X3.L,0 = FL,0 = FL,U (x,8). With these stipu-
lations, the cylindrical equations can be cast in the same form as eq. (20)

where now:

E=E (20)

G = rer—ar.d F

=}
[

- (ar,x)E/(brr) - ar,xr(E/r)g

and the transformation parameters ap’é, ar.x' bé and br are defined by:

1)
3
o.

I

= [(l-c)rLé + gruéll(ru—rL)

]
H

[(l—g)rL + gry ]/(PU-rL)
X X

g = 1/(6;-6))

o
f

1/(r )

r v L

For rectangular jet problems with a large aspect ratio (> 2/1), a
hybrid mapped rectangular/cylindrical grid (Figure 4) would be utilized. As
the solution evolves and the jet becomes more circular, the cylindriecal
origin moves to the flow origin. The procedures entailed in this moving

origin methodology will be described in a subsequent section of this report.

...14_
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FIGURE 4. Hybrid Rectangular/Circular Mapping In Cross-Flow Plane For
Generalized Rectangular Jet Problems.
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3. NUMERICAL PROCEDURES FOR ANALYZING SUPERSONIC
MIXTING PROBLEMS AND NUMERICAL STUDIES

3.1 Interior Point Algorithm

In present versions of SCIP3D, the grid points are equally spaced in
both the n and ¢ directions, All convective terms are represented using
one-sided (two point) difference expressions; diffusive terms are
represented using central difference expressions. The solution at interior
grid points is obtained using a spatial marching, rotating version of the
MacCormack algorithm (see ref. 30). For the grid point, I, J (see Figure
3), this two-step algorithm takes the following form in advanecing the
solution from & to & + At (~ denotes predictor level values; - denotes
corrector level values at & + Af; and, ey and e, are alternated between 0
and 1 at odd/even steps to provide a nonpreferential (rotating) treatment of

wave/convective processes).

Predictor Step

& = - A ra- - (1- -
E(I,J) E(I,J) At [(1 ey)FI+1,J (1 28y)FI,J ey)FI-l.J]
Az (20a)
- i [(1—az)GI,J+1 - (1--282)(31’J - &6 541~ Hy sA%
+ VF(I.J)A§
Corrector Step
E =1 £ - A3 F —-2¢)F
E(I,J) 5 {E(I,J) + E(I,J) An [f:yFI_'_LJ + (1 zey)FI,J
(20b)
- (e ~1)F. - .1 - A% g —2¢ )8 -8
(ey DF;_3.4] At [ezGI,J+1 + (1 zzz)GI,J + (e,-1)Gy ;41

- By At + Voo, o4z }

-16~-



where, for f = U, VF takes the form:

]
o

4 -
VF(I,J) Anz { uI[f(I+1,J) - £(1,dJ)] - uI[f(I,J) - £(I-1,J)]1 }

(21)

+ -—

After both the predictor and corrector steps, the conservation array,

E(1,J), is decoded using standard supersonic flow decode procedures (see
ref. 1).

The algorithm utilized is fully explicit and the step—size is limited
by both hyperboliec (CFL) and parabolic stability constraints. These are
combined in a ’parallel-resistor’ manner (viz., At = (1/A§HYP + 1/A§PAR)—1)
with the CFL constraint satisfied using nonlinear reference plane
characteristic intersections. For the fully supersonic jet mixing problems
under consideration, the hyperbolic CFL constraint effectively controls the

allowable step-size, with the parabolic criterion having little impact on
the zallowable step-size.

3.2 Grid Distribution and Step-Size Control

Consider the rectangular jet mixing problem with mild (e.g., 2/1)
aspect ratio depicted in Figure 5. A simplistic hybrid grid (drawn with
extremely ecrude grid definition) could be utilized to initiate the
calculation. As the Jjet contour takes on an elliptical appearance, the
origin would be moved to the left (e.g., rectangular planes are eliminated)
until far downstream (when the cross-section is circular), the cylindrical
origin coincides with the flow axis of symmetry. Examples illustrating this
'moving origin’ methodology will be exhibited.

-17-




4
*-1— CARTESIAN COOR’DS.:!-:Il
CYLINDRICAL COORDS. —

|/ /
/
/

'\\

T~
AN
\
\
\

[/, P
11/ 4ﬁ ==

FIGURE §. Initial Hybrid Grid For Analysis Of Rectangular Jet Mixing
Problem.
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The coupling of cartesian and cylindrical grids is relatively
straightforward, but issues must be addressed in treating grid points near
the cylindrical grid origin. Presently, a ‘'brute-force’ approach is
employed which utilizes a number of overlap cartesian planes (Figure 6),
with properties interpolated from the cylindrical grid solution. Using
these overlap planes, the rectangular portion of the flowfield is integrated
first at the predictor level to establish boundary conditions for the
cylindrical region, which is then integrated at the predictor level. The
rectangular portion is then integrated for the corrector step, followed by
the integration of the cylindrical region for the corrector step. Only one
solution (rectangular or cylindrical) need be kept in core storage at a
time. (Note that for very high aspect ratio problems, core storage can be
minimized by utilizing several blocks of rectangular grids, each solved

independently utilizing overlap planes for coupling). Note that at the

hybrid origin, W (= 0) and V in the cartesian system are single valued but
in eylindrical coordinates, ¥V = 0 and W = V cosé. Specialized procedures
must be employed to avoid step-size limitations associated with cross-flow
differentiation in eylindrical coordinates in the vicinity of the origin due
to the small physical spacing between grid points. Again, the present
approach is 'brute-force’ (e.g., only selective grid points are calculated
in accordance with the ratio of raAé to ruAé). The hybrid grid has only

recently been incorporated into the code -and further exploratory work
appears warranted.

The 'shear layer’ initialization for jet interaction problems utilized
in SCIP3D is directly analogous to that employed in previous overlaid

viscous/inviscid jet models.?1,?*2 The initialization entails:

(a) determining initial mean flow shear layer profiles centered about
the jet slipstream location a small distance downstream of the

nozzle exit plane (see refs. 31 and 32 for details); and,
(b) determining initial turbulence parameter (ke or kW) profiles based

on an equilibrium turbulence hypothesis and the use of a mixing

length turbulence model approximation.

-19-



® CARTESIAN GRID POINTS
Z, W O CYLINDRICAL GRID POINT:

D) 0
o [ o S o -
¢ o
\J »
] 5% 20 X
\ Q)
&, » \'
- ¢ DI by 3
A ™
o ‘:' o) X
- \¢, X 0
\y/ -y ) ) (\3 &> N
o . S . )
0 0 Y
-, [0 > ar
e '~. o - ‘." “' -’ A
e (3 - )
-, » = o -’
2= Y \~ A Y
» v,
Jo v P . .
L] s * -
) ) “ ] | .. ] ) I |
‘n D mm un (0 4N D n » M (1 Y \
----------- - -
?

CARTESIAN OVERLAP PLANE

ORIGIN

FIGURE 6. Cylindrical/Cartesian Grid Coupling Using Overlap Cartesian
Planes.

-20-



3.3 Boundary Point Procedures

The following boundary surface types are analyzed in the supersonic
version of the SCIP3D model:

(1) solid surfaces (PNS with slip [no BL] or Euler limit);
(2) symmetry planes; and,
(3) Jjet mixing layer outer edge.

The treatment of symmetry planes, using appropriate odd/even reflection
conditions, employs standard techniques. Solid surfaces are treated using a
variant of the Abbett wave-correction procedure?? which incorporates the
surface entropy approach and corner point methodology of Dash and Del-
Guidice®®. Jet computational boundaries are configured to fall outside the
viscous jet boundary using the growth rate formulation of equation (19) as
schematized in Figure 3. For nonuniform supersonic flow surrounding the
Jjet, the external flow can be calculated concurrently using the present
shock-capturing algorithm in the inviscid limit. This is accomplished by
extending the numerical domain outward sufficiently to capture the bounding
outer shock using an estimate of the shock growth with a safety factor. For
uniform surrounding flow, the external flowfield can be approximated using a
linearized pressure/flow-deflection relation. In applying this approach,
the nearfield portion of the jet is solved with the grid encompassing the
captured jet induced bow shock (Figure 3) as discussed previously. The jet

boundary is calculated using the Abbett wave—correction procedure as will be
summarized below.

The approach taken for jets exhausting into uniform supersonic streams
assumes that the jet has quarter-plane symmetry and hence, the free stream
velocity, U, is aligned with the x coordinate direction. Consider the
calculation for upper jet boundary points on the surface zU(x) (Figure 7).
The boundary points, J = JMAX, are first calculated using the interior point
predictor/corrector algorithm with backward/backward predictor/corrector
convective differences in the =z direction and standard alternating
predictor/corrector differences in the y direction. This yields properties
Us, V¢, P*, M*, etc. which do not satisfy the external flow solution. The

external flow pressure, PE' is given by the linearized relation:
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™32
E © (6*+9"') (22)
M2-1

where 0% is the flow angle based on the predictor/corrector solution, viz.:

1/2
6¢ =S , tan-? (V“SY*’) (23)

(S =1 if Q* . rp > 0; S = -1 if Q* , ;P < 0; rp is the position vector to
the boundary point in the plane x = const; Q* is the velocity vector, Q* =

U*i + V‘iy + W‘iz) and ©6' is a correction to this angle (obtained via

perturbing the velocity in the rp direction only). The corrected boundary

pressure is given by an isentropic simple wave rotation from P*, 0%
conditions, viz.:

P = P=* l—ﬂ&-

\/ Mz-1

(24)

Solving eqs. (22) and (24) simultaneously with PC set equal to PE
yields the corrected boundary pressure and flow angle. The total enthalpy

remains invariant (H.r = HT*) and the density is expanded isentropically (pc
= p*(PC/P‘)llz). Hence, the magnitude of the corrected velocity is given by
(for a perfect gas):

Q. = ( 21 Fe )1/2 (25)
c = 2HTC R

and the corrected velocity vector can be written:

G - Q* + Q' = Uei, + (Ve4v)L o + (W), (26)
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P
y Zz
vi=q' (L) ;w=q (L) (27)
r r
P P

Substituting the expressions for v' and w' in eq. (27) into eq. (26), and
setting the magnitude of | aC | to the value given by eq. 25 yields a
quadratic expression for the magnitude of q'; the sign corresponds to that
of @' (i.e., 3= |q'k, ire' >0 q =-|q k., ire’ co).
P p

In applying the Abbett wave-correction procedure at solid surfaces, the
same predictor/corrector sequence discussed above is utilized. Thus, for an
upper wall point, z, = F(x,y), the MacCormack algorithm would be employed
with backward/backward differences in the 2z direction and alternating
differences in the y. The resultant velocity vector will not satisfy the
boundary condition V. 0 = 0 and must be rotated through the angle 6’ given
by @ .0 = |a* | sine’ yielding

—U*Fx~V*Fy+W‘

6' = sin-1 { } (28)

(14F 247 _2) /2qe
X y

with the corrected pressure, Pc’ obtained via the relation

2 2 1/2
1n (P_/pe) = myie¢/(4y-1) "/ (29)
The corrected density, Por is obtained from the isentropic relation
P /oY =P, /p) (30)

and the corrected velocity, Qc, is obtained from

vy P
* = o _C l 2
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Then, the corrected velocity components are given by:

Q = AT V'A\+W’N
e = Qc t = Uet1+ ct2 ct3 (32)
where
NN
a-@ .2 %

For corner points with no cross-—curvature (i.e. Zu = F(x), Yy = G(x)), the

concurrent satisfaction of V .'ﬁ\= 0 on both surfaces is obtained by apply-

ing eq. (29) additively for rotations through the angles Oi + ei where:

F -1

tanei =F, -5 (34a)

' = —V—‘
tanG2 Gx e (34b)

3.4 Corner Problem Test Case

The wave/shock-capturing capabilities of SCIP3D were first checked out
by the performance of fundamental 3D corner flow interaction problems.
Calculations were performed for:

(1) a double expansion corner;
(2) an expansion/compression corner; and,

(3) a double compression corner.

In these test calculations, waves generated by two perpendicular walls
interact with each other. Reference 34 provides details of these elementary
cases. These calculations were performed starting with uniform supersoniec
flow, discontinuously furning the lower and side walls at x = 0. A mapped
rectangular domain was implemented for all the calculations employing

quarter-plane symmetry. The calculations were terminated before the wave
systems reached the symmetry planes.
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Boundary conditions at the walls were analyzed using a variant of the
Abbett wave correction technique modified to employ the entropy variation
along the grid line one grid interval away from the wall (see refs. 30, 34,
35). As discussed in Section 3.3: (1) wall point properties are first

calculated using the MacCormack algorithm with differences evaluated ’into
the flow’ in both the predictor and corrector steps; and (2) the pressure
and flow angles are then ‘corrected’ via a rotation in the plane containing
the wall normal and predicted velocity vector so as to satisfy the boundary
condition V . n = 0. At the corner point, the Abbett technique is formu-
lated whereby the properties at the corner are evaluated based on: (1)
application of the MacCormack algorithm using both Y and Z derivatives ’'into
the flow’ on both predictor and corrector steps; (2) a dual correction
procedure to satisfy V . 2 = 0 on both intersecting surfaces yielding the

total turning angle, AOT, i.e.,

AOT = A91 + A92

where A91 and A92 are the turning corrections required on the two inter-
secting surfaces; and, (3) evaluation of the pressure via the relation

™y

= ——— A
ln(Pca/PM) + eT (35)
‘/M2 -1
M
where PM is the value predicted by the MacCormack algorithm and Pc is the

corrected value. This approach has been found to work extremely well.

Results for the double compression corner test case are described below.

In this Mach 3.17 case, bath the lower wall and side wall were turned
up by 12.5° generating two intersecting shock waves, as exhibited in the
insert of Figure 8. The predicted pressure contours after 18 steps are
shown in Figure 8 and exhibit the classic behavior obtained in experiments
and using conically invariant marching procedures. The streamwise corner
pressure variation is shown in Figure 9 and ’'settles down’ after several
steps to the correct asymptotic value observed experimentally. The initial
oscillations occur due to capturing a strong corner shock (122/2° + 121/2°

of abrupt compression) with no initial grid resolution.
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3.5 Square Converging-Diverging Nozzle Problem

The next sample calculation was performed for a square converging—
diverging nozzle (Figure 10) which encompasses the double-expansion and
double-compression wave interactions discussed in Section 3.4. Complete
details of this flowfield are given in ref. 34 which describes results
utilizing the earlier BIGMAC 3D nozzle model of Dash and DelGuidice. The
initial Mach number for this case was 2.94 and the initial pressure was 0.4
atm. The starting profile was uniform. Figure 11 exhibits predicted
temperature contours on the symmetry planes (quarter plane symmetry was
assumed) and pressure contours at the station x = 15 showing the occurrence
of dual plane shock interactions. Figure 12 exhibits the predicted stream-
wise variation of Mach number along the axis and comparisons with the
results of Chang?¢ (which terminated at the shock). Figure 13 exhibits the
streamwise variation of pressure along the axis and comparisons with results
of the GIM code??. Figure 14 exhibits the predicted streamwise pressure
variation along a wall/axis juncture. The results compare favorable with
those of the GIM code and with previous BIGMAC shock-capturing results?+4
(not shown). The predicted streamwise pressure variation along the corner

is shown in Figure 15.

3.6 Balanced Pressure Square Jet Problem

This calculation was performed for a hot Mach 3 jet (TJ = 2000 °K)
exhausting into a colder Mach 3 uniform external stream (TE = 500 °K) - the
resultant jet velocity ratio, UJ/UE, was 2/1. The calculation was performed
with a 21x21 square grid utilizing the 'uniform jet'’ startline procedure
described in Section 3.1, to provide initial shear layer profiles. or
interest is the transition from square to circular type contours. The
predicted outer jet boundary contours (é = 0.01) shown in Figure 16 for
several x stations [é represents an inert species, viz., 6 = 1 in the
unmixed Jjet and equals O in the external streams; for Pr = 1, ¢ also
represents the nondimensional axial velocity distributions, i.e., 6 =
(U-UE)/ (UJ—UE) for constant pressure mixingl clearly exhibit this
transition. At x/r"j ~ 20, the boundary contour still has a distinct

noncircular appearance while at x/r, ~ 40, the contour starts to appear

J
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FIGURE 16. Jet Boundary Contours For Balanced Pressure Square Jet
Problem, ke Turbulence Model Utilized.
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circular, At x/rJ ~ 80, the outer contour is essentially circular as is the
entire jet solution (Figure 17).

We note that at x/r'J ~ 20, the peak turbulence levels (Figure 18) occur

on the two symmetry planes and are well off axis, characteristic of shear
layer-like behavior, while further downstream, peak levels are centered

about the Jjet axis. The predicted variation of the turbulent kinetic
energy, k, and the species parameter, ¢, along the jet axis are exhibited in
Figure 19 and are compared with SCIPVIS? predictions for the ’corresponding’
circular jet (the square Jjet was initially 2x2; the circular jet had an
initial diameter of 2), The square Jjet is predicted to mix somewhat faster
than the circular jet (which was also predicted using 21 grid points and the
same turbulence model). If we perform the comparison for jets of equal mass
flux on a scaled basis (viz., k, é vs. x/nA), the circular jet would mix
faster than the square jet. Figure 20 compares the predicted axial species
decay along the Jjet centerline using the ke and kW turbulence models. The
ke model is seen to predict substantially faster mixing in accord with past
observations for axisymmetric jet problems (see ref. 1). Figure 21 depicts
predicted species (6) and temperature (T) contours in the plane of symmetry
(y =0 or 2z = 0) obtained using the ke turbulence model.

3.7 Underexpanded Square Jet Problem

The same square jet problem described above was repeated with the jet

exhaust pressure boosted to 2 atm (PJ/PE = 2/1). The calculation was per-
formed in both rectangular and cylindrical coordinates.

3.7.1 Rectangglar Coordinate Solution

The rectangular coordinate calculation was performed with a 21 x 21
rectangular grid initially spread evenly over the quarter plane domain 0 ( y
{2 and 0 < z < 2. The calculation initiates with a Prandtl-Meyer fan
propagating inward from the nozzle trailing edge lip to the axis, and with a

plume induced bow shock propagating outward. Figure 22 exhibits pressure

contours for this case on the symmetry planes (y = 0 or z = 0) with the
extent of the shear layer (.1 ¢ é ¢ .9) superimposed. The symmetry plane
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FIGURE 18.
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FIGURE 22.

Pressure Contours In y,z = 0 Symmetry Planes For Under-
expanded Square Jet Problem, Rectangular Coordinate Solution.
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plot closely resembles the analogous 2D/axisymmetric Jjet solution plot.

However, contours in the cross-flow planes, x = constant, clearly exhibit
the 3D characteristics of this flow.

Figure 23 exhibits several pressure contours in the cross-flow planes
at stations 0 ¢ x { 10. The square startline solution (x ~ 0) Jjust down-
stream of the cowl lip depicts the inward expansion and outward compression
process quite distinctly. The pattern at x = 2 shows the complex effects of
the interaction of the initially planar/perpendicular wave fronts. On the
Symmetry planes y = z = 0, the pattern is 2D like but on the 45° plane (y =
z), the 3D interactions of the waves are quite evident (e.g. the contour of
minimum pressure centered about y = z ~ .75 results from the interaction of
the two side expansions, ete). The wave fronts of the barrel shock can be
distinguished at x = 6 and the pattern is highly three—dimensional. The

reflected wave fronts are distinguishable at x = 8 and x = 10.

Figure 24 depicts é contours at these same axial stations showing the
evolution of the jet shear layer contour from square to rounded shapes. The
initially square contours take on a somewhat irregular shape initially in
response to the 3D convective cross—flow velocities generated by the
pressure field. At x = 10, the contours again become smooth with rounding
about the 45° plane, and downstream, will take on rounded shapes as in the
balanced pressure case. The outer jet contours (6 = .1) for the first
several radii are compared on a single plot in Figure 25 for both the near-

field (0 ¢ x ¢ 10) solution and further downstream to x = 40.

The SCIP3D predicted nearfield centerline pressure variation is
compared with SCIPVIS predictions for ’'corresponding’ planar (2D) and
circular (AXI) jets (Figure 26). The initial square jet pressure decay
predicted by SCIP3D is bounded by the planar and circular SCIPVIS pre-
dictions. The square Jjet recompression initiates downstream of the circular
case and the pressure variation is more rapid with an overshoot occurring at

x ~ 8 that is not evidenced in the circular or planar situations.
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3.7.2 Cylindrical Coordinate Solution

In the rectangular coordinate solution, the boundaries zu(x) and yu(x)
moved outward to encompass the viscous jet as per the discussion of Section
2.5 and the Figure 3 schematic. In cylindrical coordinates, the outer
boundary, ru(x,ﬁ). adapts to the shape of the jet contour. Figure 27
depicts the cylindrical grid at x = 0 and x = 10 employed for this problem
(21 points in the r direction and 12 points in the ¢ direction were
utilized). Figure 28 exhibits pressure contours in the symmetry planes (¢ =
0 and 7/2) which should be compared with those of the rectangular solution
(Figure 28). A comparison of predicted centerline pressures along the jet
axis, and, predicted jet outer boundary variations in the symmetry plane are
exhibited in Figure 29 for the cartesian and cylindrical solutions. The jet
boundary variations are seen to be essentially identical. The axis pressure
variations are comparable for 0 < x ¢ 8 but have some departures downstream,
possibly due to the different grid resolution in the cross-flow direction

which could affect the near-axis solution in the vicinity of shock re-
flection.

A comparison of ¢ contours at x/rj = 10 (Figure 30) for the cartesian
grid and cylindrical grid solutions shows that the mixing characteristics of
the two solutions is essentially grid independent. Cross—-flow velocity
vectors for the cylindrical grid solution at x/r'J =2, 4, 6, 8 and 10 are
exhibited in Figures 31A, B, C, D, and E respectively, and clearly exhibit

the wave effects. At x/rj = 2 and 4 the plume is expanding and the cross-—
flow is small relative to the grid lines, ¢ = constant. At x/rJ = 6, the
flow is recompressing and a barrel shock is propagating towards the axis
(see also, the pressure contours of Figure 23). The cross—flow is seen to
be highly three-dimensional in the vicinity of the barrel shock. At x = 8
the barrel shock has reflected from the axis, and, at x = 10, the reflected

shock has propagated back into the flow turning it parallel to the axis.

3.8 Balanced Pressure 4/1 Aspect Ratio Rectangular Jet Problem

This quarter plane symmetry calculation was performed for an exhaust

emanating from a rectangular nozzle (0 ¢y < 2; 0 < z < 1/2) with the
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initial 21x21 grid encompassing the domain 0 { y < 2.5 and 0 { z < 1, The
computational boundaries yu(x) and zu(x) adapted to the growth of the jet as
described in Section 2.5. The calculation was run out to x = 120 using the
ke turbulence model. The exhaust and external flow conditions were the same

as for the previous balanced-pressure square jet case, namely MJ = 3, TJ =
2000 °K and ME = 3, TE = 500 °K.

The nearfield structure of the rectangular jet flow is exhibited by the
contours of the velocity, U; the species parameter, ¢; the temperature, T;
and, the turbulent kinetic energy, k; in the symmetry planes y = 0 and z = 0
as exhibited in Figure 32-35. Cross-flow contours of ¢ at x = 5, 10, 20 and
40 (Figure 36) show the nearfield shape change from a rectangular to an
elliptical cross-section. Cross-flow contours of k at = 10, 20 and 30
(Figure 37) show peak values of turbulence to be off-axis and initially
dominated by the stronger mixing in the vertieal (z) direction.

The overall jet structure (nearfield/farfield) is exhibited in the ¢
symmetry plane contours of Figure 38 for 0 ¢ x ¢ 120, and, the 6 cross—flow
contours at x = 60, 80 and 100 (Figure 39). The centerline variations of é,

T, and k for 0 { x < 120 are exhibited in Figures 40 - 42,

3.9 Underexpanded 4/1 Aspect Ratio Rectangular Jet Problem

The above problem was repeated with the jet pressure boosted to 2 atm,
and all other conditions remaining the same. The pressure contours in the
two symmetry planes (y = 0 and z = 0) are exhibited in Figure 43 with the
shear layer (.1 ¢ 6 < .0) superimposed. Jet contours (6 = .1) at x = 0, 10,
20 and 40 (Figure 44) exhibit a gradual transition towards an elliptical
cross section, with the ‘effective’ aspect ratio at.x = 40 (yMAX/zMAX)
reduced from 4/1 to 2.3/1. The bulges due to wave/shear layer interactions
are quite pronounced at x = 10 and 20. Note that the é contours at x = 10
and 20 nearly coincide since the jet has fully expanded at x = 10 and then
recompresses in going from 10 to 20. The predicted pressure variation along
the jet axis of symmetry is exhibited in Figure 45.
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Symmetry Planes.
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3.10 Multiple Underexpanded Square Jet Problem

A calculation analogous to that of the underexpanded square jet problem
(Section 3.7) was performed for an infinite array of square underexpanded

Jets as exhibited in Figure 46. The jets are initially 2x2 and their axes
of symmetry have a spacing of 4. The lower portion of Figure 46 exhibits a

schematic of the predicted shear layer growth and shock pattern for 0 < x <
40 in the symmetry plane z = 0. The calculation was performed utilizing
symmetry conditions on the planes z =0, y = 0 and y = 2. The predicted
pressure contours and ¢ contours in the plane z = 0 are exhibited in Figure
47. The flow is characterized by jet-induced bow shocks traversing the flow
in the spanwise direction as readily evidenced by the pressure contours of
Figure 47. The species contours expand/contract in accordance with the
passage of the shock waves. The individual mixing regions coincide at x ~
35 as indicated by the coalescence of the outer é contours. 6 contours at
the axial stations x = 0, 10, ..., 60 (Figure 48) exhibit the growth his-
tory of the individual jets and their interaction for x > 35, with pronoun-
ced wave interactions producing the corner region bulges in the early growth
stage (0 ¢ x ¢ 20). The mixing characteristics in the symmetry planes z = 0
(TOP VIEW) and y = 0 (SIDE VIEW) are exhibited by the velocity and turbulent
kinetic energy profiles at x = 0, 10, ..., 60 provided in Figure 49.
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FIGURE 46.

Schematic Of Multiple Square Jet Problem And Shock/Shear
Layer Pattern In z = 0 Symmetry Plane.
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FIGURE 47.

6 and P Contours In z = 0 Symmetry Plane For Multiple Square
Jet Problem.
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Axial Velocity And Turbulent Kinetic Energy Profiles For
Multiple Jet Problem.
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4. NUMERICAL PROCEDURES FOR ANALYZING SUBSONIC MIXTNG
PROBLEMS AND NUMERICAL STUDIES

4.1 Overview of Pressure-Split PNS Subsonic Marching Approach

One of the most popular procedures for the analysis of 3D subsonic
mixing problems has been the SIMPLE procedure of Patankar and Spalding?®,
Numerous codes have been developed based on this procedure for both free and
ducted jet mixing problems. In the SIMPLE procedure, the flow solution is
obtained by a stepwise parabolic marching integration combined with a
quasi-elliptic cross-flow integration. To permit spatial marching, the
pressure field is split with the streamwise component imposed (or arrived at
from global continuity constraints for ducted flows) and the cross-flow
variation arrived at from the coupled solution of the continuity and

cross—flow momentum equations.

The SIMPLE procedure utilizes an iterative cross-flow integration

approach whereby:

(1) the cross—flow momentum equations are independently solved to
yield the cross—flow velocities, V and W; and,

(2) a pressure correction equation arrived at from continuity with
‘partial’ cross-flow momentum coupling is used to upgrade the
pressure field.

Steps (1) and (2) are iterated upon until a converged cross-flow solution is
obtained. This iterative cross—flow procedure is not always stable and
according to Carroll3®, 'most of the instabilities are caused by the coupl-
ing between the equations’. To reduced these instabilities, significant
underrelaxation is required between the iterative sweeps. In addition, in
complex regions such as the initial corner regions of rectangular jets,
convergence problems occur which sometimes cannot be remedied by under-

relaxation.
In analyzing 2D subsonic mixing layers, a very different ’‘philosophy’

of approach is often taken for unbounded problems, which more closely follows

standard boundary layer precepts. Thus, in the 2D boundary layer cross-flow
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integration procedure of Bradshaw and coworkers+4°,41 the cross-flow (normal)
velocity is obtained from the continuity equation while the cross-flow
Pressure variation is arrived at from the normal momentum equation. Here,
the roles of the cross-flow equations are reversed. This approach has
better convergence characteristics than the SIMPLE procedure, and, if the
pressure variation is negligible, reduces to a standard boundary 1layer

solution requiring no iterations.

Recently, Dash and Sinha® have reformulated the 2D cross-flow equations
to obtain an independent equation for the cross-flow velocity which requires
no assumptions about the cross-flow pressure or density variations. This

provides a noniterative solution to the cross-flow equations for unbounded

flows in situations with large cross-flow variations, and thus, improves
upon the iterative procedure of Bradshaw and coworkers. An extension of
this noniterative cross-flow procedure to 3D free jet flows is discussed in
this report. The numerical framework for the parabolic (streamwise) portion
of the jet mixing solution parallels that of SCIP3D as will be summarized

below.
In the new cross—flow approach formulated:

(1) continuity-based equations for the cross-flow velocity components,
V and W, are arrived at via combining the continuity and cross
flow momentum equations, and, differential equation-of-state
relations, subjected to fixed values of parabolic variables, U
(streamwise velocity) and H (total enthalpy) arrived at apriori;

(2) the V (or W) equation is coupled to the W (or V) and P dependent
variables only through vertical (z direction) derivative terms -
thus in the absence of local cross-flow, no coupling occurs and V
(or W) can be solved independently as in the 2D approach of Das
and Sinha; :

(3) recognizing that V and W must be closely coupled in vortical
(e.g., corner) regions, the V and W equations are solved
concurrently in a coupled fashion with the cross-flow pressure
field lagged;

(4) the cross-flow pressure field is updated using a cross—flow
momentum equation - if the pressure changes are negligible, the
solution is converged and no iterations are required; if the
pressure changes are substantial, Step (3) is repeated using the
updated pressure field; and,
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(5) the direction of the cross—flow integration sweeps are alternated
at subsequent steps to eliminate biasing of the difference
relations.

The present coupled, explicit cross—flow solution procedure is restricted to
free (unbounded) jet flowfields with quarter plane symmetry. For other
subsonic jet mixing problems with different types of boundary conditions,

the cross—-flow solution procedure requires modification.

4.2 Parabolic Marching Procedure

The ‘’parabolic portion’ of the pressure-split PNS marching integration
is performed using a variant of the SCIP3D integration procedure with the

following modifications:

(1) the streamwise (axial) momentum equation is solved with e« = 0 so

that EU = pU2 (rather than P+pU2) and the pressure gradient, 8P/dx,
is treated as a prescribed forcing function (see eq. 1);

(2) an upwind variant of the MacCormack predictor/corrector algorithm
is employed (see ref. 1);

(3) the wave portion of the jet growth rule given by eq. (19) is
eliminated (i.e., dzU/dx = ZU(af/aZ)JMAX/fI);

(4) a simple subsonic decode procedure is utilized to obtain the non-
conservation variables from the E conservation array after both
the predictor and corrector steps, viz.:

f = Ef/pU
where:
Ef = pUf

and;
(5) the pressure field is approximated by:

9 _ap . _ 9P ap (36)
9  ox + 4y ta, 5?

which is solved in an explicit predictor/corrector fashion using
central differences, with 9P/dx specified.

At the completion of the predictor/corrector ‘’parabolic integration’,

'firm’ values of the variables U, H and é are obtained, and ‘approximate’
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values of the variables V, W and P are available which do not satisfy the
continuity equation. The values of V, W and P are then revised to satisfy
the coupled continuity and cross-flow (V,W) momentum equations with U, H and
¢ fixed, and, with the approximate values of V, W and P used in evaluating

coefficients for the cross-flow integration to be discussed below. No
iterations between the parabolic and cross~flow sweeps are performed;

rather, the axial step size is reduced in regions with large gradients (such

as the initial jet mixing region) to minimize errors incurred by this
approximation.

4.3 Cross-Flow Equations

Expanding the mapped form of the continuity equation yields the form
listed below (eq. 37).

b b
9 . §3 Lo 4 Enl y & 4 ¢ 2_5 y oW
FY3 an 3t 5 ) T
(37)
R O D
gl teyamtazs!

In eq. (37), by. bz. ay and a, are mapping transformation terms and the
derivatives of the streamwise (axial) velocity, UE’ Un.and U_ are known from
the parabolic integration performed apriori. The density derivatives in the
continuity equation are replaced by derivatives of pressure and cross—-flow
velocities, as well as known derivatives of streamwise velocity and total
enthalpy. This is accomplished by differentiating the perfect gas state
relation (eq. 38) which yields the density derivative Py given by eq. (39)

where a represents the &, n or ¢ directions.

g=-2_F,1 (U2 + V2 + W2) (38)
-1 p 2
which yields:
=X B (y- -
P =Lx P+ (D) OO+ W+ WW - H ] (39)
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An important consideration concerns the treatment of the pressure

gradient term, P;. Here, equation (36) is utilized which brings in the
pressure-split approximation. Substituting the Pq expression into equation

(37) with PC given by equation (36) yields the Modified Continuity Equation

given by equation 40.

Modified Continuity Equation

b
v
_)V + [ V -t =2 ] V + ( w_)v
(YU £ i Y Y ¢
W b
+ ('y-)wg + ('yV-)W + [y ﬁ -yMz 1 wc (40)
v W
b )P + (b =)P =B
* YB n b4 < P
where:
B, =-08/3x >, 1 3y 4 o YWilu
P pU M2 1< ™? n
(41)
az ; -
—— - yW 10U +L[H +VH +WH ]
+ 1 M2 ! 4 n ¢

The cross—flow momentum equations in the y and 2z coordinate directions

in transformed &, n and ¢ coordinates are listed below:

b i
~ ~ y v (42)
V, + VV_ + WV, _ + =P = —
g vn wc pU "m ~ pU
b vV,
~ ~ z W (43)
W, + TW_ +WW,+—=P =—
g n ¢ pU & pU
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where Vv and Vw are the parabolized stress terms, and ;. B, ¥ and W are
defined by:

Y = (v-1)/v

B = pU2

& v

v [by ﬁ - ay]
& W

W= [bZ U- - aZ]

The Modified Continuity Equation (eq. 40) and these two momentum
equations comprise three equations for the cross-flow variation of three
variables, V, W and P, with the parabolic variables U and H known apriori.
By manipulations analogous to those of reference 8, continuity-based
equations for V and W can be obtained which would be independent of all

other parameters in the absence of cross-flow. The procedure for obtaining
the 'W equation’ is described below.

Starting with the Modified Continuity Equation, we replace the terms V

<
and Pq with their equivalents obtained from the V (eq. 42) and W (eq. 43)

momentum equations, respectively. The V§ term is given by:

(v=)V, =(y) [ = -2ZP -VV -WV 1] (44)
o' o pU  pU "q n <

The Pc term is given by:

v
® % - 2 [;%-w - - 1 (45)

z B ¢ B ¢ 1 3

Substituting the expressions given by eqgs. (44) and (45) into the Modified
Continuity Equation, and grouping like terms, yields the expression:

~ o~ b

WV WW z
+ (= W + (= = —— )W
YU "1 vU

W
(Y—U)w M2 T

3

(46)
~ b V b
\ W y y
=-B_+Xvyv + Xy + X p + X v
P g V B W g n M2 q
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Following the analogous steps, the 'V

equation’ listed below is obtained.

~ b ~
\') \A' y W
(= )V, + (= - == )V + ( =)V
7w g U M2 " n W g
(47)
~ b W b
v W
=~B_ +=-V_ +2—=V_ 4+ —P — W
P gV B W v ¢ M2 3
4.4 Cross-Flow Integration Procedure
Referring to Figure 3, the cross-flow plane, & = constant, is sub-

divided into IMAX-1 equally spaced intervals, An, where nq (I-1)/(IMAX-1),
Az, (J-1)/ (IMAX-1) .

quarter plane symmetry, the boundary conditions are as follows:

and, JMAX-1 equally spaced intervals, where ¢ For

=0 on ¢ =0 (J=1)
=0 on n =0 (I=1)

¢ =1 (J=JMAX)
= PE on

n =1 (I=IMAX)

Equations

constant:

(1)

(2)
(3)

(4)

(5)

(40) and (41) are solved in the following manner on the plane ¢ =

and V

the turbulent stress terms V W

functions terms;

v are treated as forcing

the pressure gradient terms Pﬂ and Pg are lagged;

the W equation (40) is integrated sweeping upward from § =0 to 1
(i.e., from J = 1 to JMAX);

the V equation (41) is integrated sweeping spanwise from n = 0 to
1 (i.e., from I =1 to IMAX);

the W and V equations are solved concurrently in a coupled manner
which entails either:

C-+
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(a) sweeping upward from J to J + 1 with a nested spanwise sweep
from I = 1 to IMAX; or,

(b) sweeping spanwise from I to I + 1 with a nested upward sweep
from J =1 to JMAX,

(6) after the coupled W and V solutions are obtained, the cross-flow
pressure field is upgraded:

(a) sweeping downward from ¢ =1 to 0 (i.e., from J = JMAX to J =
1) using the W normal momentum equation if an upward (a type)
sweep was used in Step (5); or,

(b) sweeping spanwise from n =1 to 0 (i.e., from I = IMAX to (I

= 1) using the V normal momentum equation if a spanwise (b
type) sweep was used in Step (5).

Referring to Figure 50, the V and W equations are solved using the
triangular-type difference elements exhibited. The W equation is integrated
upward in the & direction from known values of W (= 0) on the plane of
symmetry, ¢ = 0. The V equation is integrated spanwise in the n direction
from known values of V (= 0) on the plane of symmetry, n = 0. The upward/
spanwise integrations in the ¢/n directions are performed using a two point
(trapezoidal) procedure (as in the 2D cross-flow analysis of reference 8).
The other family of derivatives (n for W equation, ¢ for V equation) are

evaluated using central differences.

4.5 Pressure-Split PNS Subsonic Square Jet Calculation

This square Jet calculation (Mach .5 into quiescent stream) was
performed for a nozzle having the exit plane boundaries y = +1 and z = #1.
The calculations were performed utilizing quarter plane symmetry with the
initial grid extending to y = 2 and z = 2 yielding a substantial buffer
region of uniform exhaust flow about the jet. Figure 51 depicts predicted ¢
contours at x = 20 obtained utilizing both the ke and kW turbulence models
with the full pressure-split methodology. The faster mixing predicted by
the ke model coincides with past experience for low speed axisymmetric jets.
The pressure split solutions yield jet contours which have distinet kinks in
the outer mixing region. This is to be contrasted with the smooth contours

obtained by suppressing the effects of convective velocities on the solution
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FIGURE 50. V And W Grids And Diagonal Coupling Nomenclature For Subsonie

Cross~-Flow Solution.
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(i.e., by enforcing both V and W = 0 and thus generating a ’'diffusion only'

type solution).

The kinks in the é contours appear to be associated with the ’abrupt’
breakdown of the initial vortex sheet surrounding the jet with the subse-
quent formation of a pair of counter-rotating streamwise vortices
symmetrically spaced about the corner region, as schematized in Figure 51%.
A vector plot of the cross flow velocity field corresponding to the PNS/kW
solution at x = 20 is given in Figure 52. We note that the jet entrainment
velocities on the symmetry planes are in accord with values for planar jet
mixing solutions. The 'flattening’ of the outer ¢ profiles along the 45°
plane (y = z) is attributed to the significantly enhanced entrainment
produced by the 3D corner mixing. The 'kinks’' in the outer & profiles
correspond to the positions where the streamwise vortices ’'pump fluid out'’

of the jet.

The subsequent development of the jet out to x = 100 (PNS/kW solution)
is exhibited by the 6 = 0.1 contours at x = 40 (inner contour is é = 0.9)
60, 80 and 100 superimposed on the cross-flow velocity vector field (Figure
53). The corner—induced streamwise vortex pattern persists in the cross-
flow plane despite the nearly circular behavior of the streamwise parabolic
solution. The variation of ¢ and turbulent kinetic energy, k, along the jet
centerline are exhibited in Figure 54, and, are compared with ’correspond-
ing' planar and axisymmetric jet solutiomns (viz., solutions having nozzle

exit heights/diameters of 2) predicted using the SPLITP jet mixing model.

4.6 Pressure-Split PNS 4/1 Aspect Ratio

A 4/1 aspect ratio jet was analyzed having conditions identical to
those of the square jet case. The nozzle exit extended to y = +2 and z =
+0.5, while the initial grid, employing quarter plane symmetry, extended to

y=2.,5and z =1 (i.é.. a uniform buffer of freestream flow of width ~ 0.5

The numerical approach may also have some influence on the vortical
behavior predicted, e.g., the spatial marching procedure provides no
mechanism for streamwise pressure gradients and/or upstream influence
effects to be accounted for, which might influence the results.
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surrounded the jet initially). Figure 55 depicts predicted jet contours at
X = 20 using the kW turbulence model with the pressure split, PNS approach,
and, with the 'diffusive limit’ approach whereby the convective velocities
are suppressed (V =W = 0). As in the square jet case, the PNS ¢ contours

exhibit pronounced kinks associated with the corner generated streamwise
vortices depicted in Figure 55, while the case with convective velocities

suppressed yields smooth, kink-free contours.

The development of the jet out to x = 100 is exhibited by the 6 = 0.1
contours in the cross—flow plane at x = 40 (inner contour is é = 0.9) 60, 80
and 100 (Figure 56) with a schematic of the streamwise vortex pattern
superimposed, By x = 100, the jet contour takes on an elliptic appearance
with the vortex-induced kinks no longer evident. The ¢ contours in the y =
0 and z = 0 symmetry planes out to x = 300 are depicted in Figure 57,
indicating that by x = 300, the flow is nearly circular. Profiles of & and
turbulent kinetic energy, k, in the two symmetry planes at x = 100, 200 and
300 are exhibited in Figure 58. The variation of axial velocity, U, and
turbulent kinetic energy, k, along the jet axis of symmetry are depicted in

Figure 59.

4.7 Parabolic Marching Approach (P = P(x) Only)

An alternate procedure for analyzing subsonic jet mixing problems
involves the solution of a reduced set of parabolic 'boundary layer
equations’., In this approach, the cross—flow grid must be aligned so that
one coordinate direction is essentially normal to the jet boundary. This
can be accomplished using the hybrid adaptive rectangular/cylindrical grid
discussed previous (see Figure 4). Utilizing this adaptive grid, the z
(cartesian) and r (cylindrical) directions align themselves normal to the
jet boundary. Thus, W represents the velocity in the normal (entrainment)

direction and V represents the cross-flow velocity. The equations solved

neglect pressure variations in the cross-flow plane (P = P(x) only). The

solution procedure employs a single parabolic solution sweep whereby the V
component of velocity is determined from the V-momentum equation while the W
component of velocity is determined from the continuity equation

aposteriori. The W—-momentum equation is neglected consistent with the

approximation of constant pressure in the cross-flow plane.
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FIGURE 57,
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4.8 Parabolic Rectangular Jet Analysis in Adaptive Cylindrical Coordinates

The calculation described here utilized an adaptive cylindrical grid to
7= 800 °K) exhausting
into a Mach .3 external stream (TE = 278 °K). The cylindrical grid employed

analyze a 2/1 Aspect Ratio rectangular jet (MJ =1, T

21 points in the radial direction and 11 6 planes (0 < é < n/2). The cal-
culation was performed using the simplified parabolic boundary layer run
option described above. Figures 60 and 61 exhibit predicted é and T
contours in the y = 0 and z = 0 symmetry planes. Figures 62 and 63 exhibit
predicted 4 and T cross-flow contours at x = 5, 10, 20 and 30. ¢ and T

cross—-flow contours at x = 50 (Figure 64) show a nearly circular behavior.

4.9 Comparison of Parabolic and Supersonic PNS Predictions for 3/1 Aspect

Ratio Rectangular Jet Using Hybrid Adaptive Grid

This calculation was performed for a hot Mach 3 exhaust stream (TJ =
2000 °K) exhausting into a colder Mach 3 external stream (TE = 500 °K) to
compare the simplified parabolic run option with a full supersonic PNS
calculation. The calculations were performed using the rectangular/
cylindrical hybrid adaptive grid with a moving origin. Figure 65 compares
cross-flow 6 contours for the two solutions at x = 20. Both exhibit the
same ‘'kinked' behavior in the corner region. Figure 66 depicts the cross-
flow velocity vector field at x = 20 for the parabolic solution — note that
the cylindrical origin (here at y = 1) moves inward to maintain the same
dimensions on the é = 0 and é = n/2 planes. Figure 67 exhibits the

evolution of the jet boundary contours from rectangular to circular.
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5. NUMERICAL PROCEDURE FOR ANALYZING SUPERSONIC JETS EXHAUSTING
INTO SUBSONIC EXTERNAL STREAMS AND NUMERICAL STUDIES

5.1 Review of 2D Numerics for Supersonic/Subsonic Jet Mixing Problem

The spatial marching PNS analysis of a supersonic jet exhausting into a
subsonic external stream requires:

(1) switching the numerical algorithm from full PNS at supersonic jet

grid points to parabolic or pressure-split PNS at subsonic jet
grid points;

(2) matching the supersonic and subsonic PNS solutions at the jet
sonic line; and,

(3) providing for a global pressure iterative methodology to account

for the overall interaction of the jet and subsonic external flow.

At the 2D level, the above procedures have all been made operational. The
analysis of the mixed supersonic/subsonic problem in the absence of global
external flow interactions (e.g., the external pressure field is assumed to
be constant) has been performed with the SCIPVIS model?, and, numerous
comparisons with the data of Seiner have been performed which demonstrate
the viability of this approach (see refs. 2-5). A'typical solution is
exhibited in Figure 68 (from ref. 1) which shows the ability of SCIPVIS to
accurately predict the complex jet pressure field. A key feature of SCIPVIS
was the characteristic-based methodology developed to couple the supersonic
and subsonic solutions at the jet sonic line as schematized in Figure 69.
The coupling (at the grid point I*) is performed with the outer jet boundary
pressure, Pe(x), prescribed and a viscous-characteristic constraint Jjust
under the jet sonic line (along A+) relating the supersonic pressure and
flow angle. In SCIPVIS, the normal pressure variation across the subsonic
outer layer is neglected and Pe(x) is imposed at the sonic line yielding the
flow angle there. Then, the variation in flow angle across the jet is
obtained from the continuity equation yielding the entrainment (suction)
velocity, Ve(x), at the jet outer edge.
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3.2 Nonadaptive Rectangular Matching Boundary Approach

For 3D jets, the coupling problem is complicated by the shape taken by
the sonic line in the cross-flow plane, as well as by initial corner region

vortical effects. In our initial work, mapped rectangular coordinates were
employed and sonic line coupling was performed along the ‘largest’ embedded

rectangle that could fit within the sonic line in the cross—-flow plane (Fig.
70). The pressure along the matching boundary was lagged yielding V and W
at all I* and J* matching points which served as inner boundary conditions
for the subsonic coupled V-W cross-flow solution. The subsonic cross-flow
solution was swept outward from the matching boundary to the outer boundary,
with y and z sweeps independent of each other until the I*, J* matching
point. The nested subsonic corner region (I > I*, J > J*) was treated using

specialized coupled logic.

This approach was applied to the analysis of an underexpanded square
Jjet exhausting into a subsonic stream. Reasonable results were obtained for
the initial jet expansion (since the square grid coincided with the initial
sonic line shape), but became quite poor when the reflected waves (which
recompress the Jjet turning the stream surfaces inward) reached the now
qQuasi-circular sonic 1line. The square representation of the sonic line
artificially delayed the recompression waves from interacting with the
corner region sonic line as shown in the sequence of cross-flow contours
displayed in Figure 71. As exhibited, the initial expansion of the jet is
well-predicted, but the recompression process (x > 4) 1leads to highly

unrealistic cross—flow contours.
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5.3 Variable Rectangular Grid Matching Boundary Approach

To remedy this problem, a variable matching boundary which adapted
itself to the sonic line cross-flow variation was implemented, still working

in mapped rectangular coordinates (Figure 72). Using this approach, the
matching logic at the sonic line is quite complex, and the solution of the

coupled V-W subsonic cross-flow equations entails very cumbersome logic.
Results using this adaptive approach are exhibited in Figure 73. The solu-
tion in the corner region ultimately goes unstable due to complexities in
concurrently handling the initial subsonie corner-induced vortices and the

reflected compression wave system.

5.4 Fully Adaptive Matching Boundary Approach

The current approach for dealing with this complex problem involves

utilizing adaptive coordinates with the cross-flow directions aligned:

(1) along the jet entrainment (inflow/outflow) direction, essentially
normal to the sonic line; and,

(2) normal to this direction and thus aligned with the sonic line and
also normal to the plane/axis of symmetry.

In this approach, a parabolic procedure is employed for analyzing the
subsonic region of the flow which neglects the momentum equation in the
entrainment aligned direction. Results for an 8/1 velocity ratio balanced
pressure square Jjet problem (MJ = 2, T3 = 2000 °K; ME = 0.5, TE = 500 °K)
performed with adaptive cylindrical coordinates are exhibited in the next
several figures. The calculations were performed using a fully parabolic
approach and the adaptive supersonic/subsonic PNS approach discussed here.
Parabolic vs. PNS solution contours of 6 and T in the jet symmetry plane are
exhibited in Figures 74 and 75, respectively. Cross—flow contours of é and
T at x = 25 are compared in Figures 76 and 77. The ’'crude’ computational
grid employed to perform this calculation is exhibited at x = 25 in Figure
78. Pressure contours at x = 25 are exhibited in Figure 79. Note the close
similarity in é contours showing that mixing processes are nearly identical,
but, variations in T contours indicating the influence of the variable

pressure field in the PNS case.
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Preliminary results for an underexpanded subsonic/supersonic square jet
problem with conditions comparable to those of the Seiner casel-f (see Fig.
68) are exhibited in Figures 80 and 81. Figure 80 exhibits é and P contours
at x = 4, The predicted variation of pressure along the jet axis for the
first shock cell is exhibited in Figure 81. To check out the code’s
performance, an attempt was made to analyze the above problem in the
axisymmetric limit and compare it directly with SCIPVIS results. The 3D
code utilized the same grid as SCIPVIS in each cross-flow plane, ¢ =
constant. The 3D calculation was performed utilizing quarter plane symmetry
employing five ¢ planes. Figure 82 compares SCIP3D predicted shear layer
boundary contours (6 = 0.05 and 0.95) in the symmetry planes with corre—
sponding SCIPVIS results. Figure 83 compares predicted centerline pressure
variations. The comparisons indicate that further work is required to deal

with near-axis effects in the 3D code to get the two solutions to agree more
closely.
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6. SUMMARY

The SCIP3D 3D PNS jet mixing model and its application to a variety of
rectangular jet mixing problems have been described in this report. For

fully supersonic free jet problems (supersonic jet into supersonic external
stream), the model has been demonstrated to predict plume flowfields for

mildly underexpanded cases, and can be used to support plume related
engineering studies at a research code level. The SCIP3D model also has
current applicability to supersonic ducted problems (e.g., 3D nozzles/
diffusers and ducted jet mixing problems) but lacks the ability to resolve

the near-wall boundary layer due to the explicit numeriecs utilized.

An extended version of SCIP3D (entitled SCHNOZ3D) has been developed
for applications to scramjet propulsion problems. SCHNOZ3D contains
generalized finite-rate chemistry capabilities and has been applied to
scramjet combustor and nozzle/plume flowfields. Features and applications
are to be reported in the Fourth National Aerospace Plan Tech Mat Symposium,
Monterey, CA, February 1988 and the 17th JANNAF Plume Technology Symposium,
NASA/LRC, Hampton, VA, April 1988. Exploratory work to extend this model to
analyze the near-wall boundary layer is in progress utilizing a time-

iterative procedure.

With regard to the analysis of supersonic Jjets exhausting into a
subsonic external stream, the current noniterative methodology requires
gridding which adapts to the sonic line shape in the cross—flow plane.
Successful runs have only been performed by invoking simplifying assumptions
for the cross-flow pressure variation in subsonic regions (e.g., P = P(x)
only). It appears that the noniterative methodology is quite cumbersome to
deal with and that efforts should focus on time-iterative methodology on a
plane to plane basis (e.g., in a spatial marching mode of operation with
upstream influence effects suppressed). Other recommended upgrades to
SCIP3D would include casting the equations in generalized coordinates and
incorporating adaptive procedures to pack grid points into shear layer
regions. Upgrading turbulence models from the two—equation level to the
multi—-scale or algebraic Reynolds stress level would also appear requisite
to deal with vortical aspects of 3D mixing. This should be followed by a
detailed validation study using the available rectangular jet mixing data

base.
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